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A B S T R A C T

Hydrophilic interaction liquid chromatography (HILIC) and reversed phase LC (RPLC) coupled to high resolution
mass spectrometry (HRMS) are widely used for the identification of suspects and unknown compounds in the
environment. For the identification of unknowns, apart from mass accuracy and isotopic fitting, retention time
(tR) and MS/MS spectra evaluation is required. In this context, a novel comprehensive workflow was developed
to study the tR behavior of large groups of emerging contaminants using Quantitative Structure-Retention
Relationships (QSRR). 682 compounds were analyzed by HILIC-HRMS in positive Electrospray Ionization mode
(ESI). Moreover, an extensive dataset was built for RPLC-HRMS including 1830 and 308 compounds for positive
and negative ESI, respectively. Support Vector Machines (SVM) was used to model the tR data. The applicability
domains of the models were studied by Monte Carlo Sampling (MCS) methods. The MCS method was also used to
calculate the acceptable error windows for the predicted tR from various LC conditions. This paper provides
validated models for predicting tR in HILIC/RPLC-HRMS platforms to facilitate identification of new emerging
contaminants by suspect and non-target HRMS screening, and were applied for the identification of transfor-
mation products (TPs) of emerging contaminants and biocides in wastewater and sludge.

1. Introduction

Nowadays, Liquid chromatography (LC) coupled to high resolution
mass spectrometry (HRMS) plays a key role in the identification of new

(“emerging”) micropollutants in the aquatic environment [1,2]. Two
parallel approaches can be followed for the identification of emerging
compounds that are not available as reference standards, namely sus-
pect and non-target screening [3–5]. Schymanski et al. proposed a
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scheme for reporting the identification confidence, where the inter-
pretation of fragmentation pattern in the deconvoluted MS/MS spectra,
retention time (tR) information (in addition to mass accuracy and the
isotopic pattern of the precursor ion) are included as supporting ex-
perimental evidence for identification and chemical structural eluci-
dation [5]. Knowledge of tR can also help reduce the number of plau-
sible candidates and, subsequently, increase the chance of true
identification [6,7]. Since the polar micropollutants and their trans-
formation products (TPs) are the major focus in the aquatic environ-
ment [3], the complimentary use of hydrophilic interaction liquid
chromatography (HILIC) with reversed phase liquid chromatography
(RPLC) can provide additional experimental evidence and support to
the identification of new compounds in the environment [6]. Never-
theless, the structure elucidation of isomeric compounds or TPs based
only on their fragmentation pattern, may sometimes not be feasible,
since they produce common fragments and the reference standards are
not always available [3,8]. In those cases, retention time prediction
could support identification.

Several approaches have been presented to predict tR in LC [9–20].
However, the accurate prediction of tR for emerging contaminants has
remained a challenge due to the lack of appropriate and wide dataset of
tR values, the non-representative selection of molecular descriptors with
sophisticated methods to cover their diverse chemical structures and tR
elution behavior [10–20]. Tyrkko et al. used ACD/ChromGenius to
predict tR and applied it for the identification of unknowns, however
the prediction error was large for most of the polar compounds and
required the use of experimental confirmation to explain the origin of
error [19]. Apart from previous studies which have a limited applic-
ability domain or showed high prediction errors, Falchi et al. [21]
followed a robust workflow and proposed a model based on the com-
bination of physicochemical properties and fingerprint information of
more than 1383 synthetic compounds. While the effect of geometry
optimization of chemical structures on prediction of tR has remained
vague, studies in which the optimization of the chemical structures was
performed prior to modeling resulted in higher accuracy [18,20–22].
Although the origin of error between the experimental and predicted tR
was investigated in a few studies [18,20,23], there is no clear agree-
ment over acceptable error windows for predicted tR. Relative accep-
tance windows was proposed as a way to include the effect of chemical
structures in an earlier study [24]. With this approach, compounds that
were similar to the compounds of the training set had a narrower ac-
ceptance windows compared to those that were less similar [24].

Although the use of HILIC is increasing as a complementary method
to cover highly polar compounds and metabolites [6], few studies have
reported modeling HILIC tR [13,22]. Therefore, there is a need for the
prediction of tR for tentatively identified polar micropollutants in
HILIC. There is a few prior information of molecular descriptors
available for HILIC. Creek et al. applied HILIC and tR prediction in
metabolite identification, [13] using logD and two charge-related mo-
lecular descriptors that comprised of pH, pKa and formal charge state
for 120 compounds. However, inter-correlation between logD and the
charge related descriptors was observed. Structural based models, i.e.
Quantitative Structure-Retention Relationships (QSRR), capable of
searching chemical space to define the correct polarity value for a
compound may help to understand the elution mechanism in HILIC. A
rigorously validated QSRR model with a wide applicability domain and
no over-fitting can provide prediction results for any structure of in-
terest (eluted in LC) with high accuracy.

Thus, the objectives of the current work were: (a) the development
of validated QSRR models with a novel workflow and broad applic-
ability domain for RPLC and HILIC HRMS platforms; (b) the develop-
ment of a novel and easy-to-use visualization methods to provide in-
formation about the origin of error in predictions using Monte Carlo
Sampling (MCS); (c) the development of a novel approach to define the
acceptable error windows for predicted tR; and (d) the demonstration of
the applicability of QSRR models in the identification of new TPs of

emerging contaminants and biocides in environmental samples.

2. Materials and methods

2.1. Sample preparation, instrumental analysis and dataset

The reagents and solvents used to measure the tR of reference
standards in RPLC were explained previously [6,24]. All the details
about the RPLC and HILIC separations and QToF-MS methods, the re-
agents and solvents can be found in supplementary material (SM, Ap-
pendix A), section SM 1.1 and SM 1.2. The lists of reference standards
used for the modeling tR are given in Tables B.1, B.2 and B.3. The
formal charge of the compounds (their average microspecies) recorded
in RPLC/HILIC with corresponding pH value was calculated using
ChemAxon (“Partitioning(logD)” plugin, Marvin v6.3.1) to find the
distribution of neutral/anionic/cationic compounds for each chroma-
tographic system. The dataset compiled for RPLC-(+) ESI mode in-
cluded 898 neutral, 69 anionic and 863 cationic compounds. The da-
taset for RPLC-(-)ESI had 218 neutral, 89 anionic and one cationic
compound. Finally, the dataset compiled for HILIC-(+)ESI had 311
neutral, 25 anionic and 346 cationic compounds. The distribution of
neutral/anionic/cationic compounds for each chromatographic system
was also illustrated in the SM (Appendix A) Fig. A.1, section SM 1.3.
There were insufficient compounds amenable to HILIC-(-)ESI to form a
sufficiently large dataset for this work.

2.2. QSRR workflows

The tR for each ESI mode (positive, negative) was modelled sepa-
rately. The geometries of all chemical structures were optimized using
MOPAC2016 (also available online at http://www.scbdd.com/mopac-
optimization/optimize/) [25]. The semi-empirical (AM1) [26,27]
method was used to achieve the best geometrical conformer (lowest
intermolecular energy). Molecular features of the optimized compounds
were calculated using the E-dragon software (available online at http://
www.vcclab.org/lab/pclient/) [28]. In addition, the lipophilicity of the
optimized compounds in the aqueous phase at various pH (log D), were
calculated at pH 3.6 (RPLC, ranging between -7.576 and 8.672) and pH
3.5 (HILIC, range -10.458 to 11.124) for positive ESI and at pH 6.2 for
negative ESI (RPLC, range -6.700 to 6.325), using ChemAxon [29]. The
dataset, including the molecular features with experimental tR gener-
ated for each condition, was pre-treated by removing the constant and
near constant molecular descriptors and further checked for the ex-
istence of co-linearity. The remaining molecular features were split into
training and test sets using the affinity propagation method [30]. Here,
the similarities between pairs of compounds were used as input to af-
finity propagation. Real-valued messages were exchanged between
compounds until a high-quality set of exemplars and related clusters
was derived gradually (Fig. A.2–A.4). Details about affinity propagation
and the heat maps for both RPLC and HILIC platforms are given in the
SM (Appendix A), section SM 2.2. A genetic algorithm, written in
MATLAB 8.5 [31], was used to select the most relevant molecular de-
scriptors that correlated to the tR. The selected descriptors were cor-
related linearly and non-linearly to tR using Multiple Linear Regressions
(MLR) and Support Vector Machines (SVM), respectively. A brief in-
troduction about the regression techniques used can be found in SM
(Appendix A), SM 2.3 to SM 2.4. The accuracy of the models built to
predict tR was investigated using an external test set and cross-valida-
tion techniques. The full validation protocols and criteria are described
in SM (sections SM 2.5) and in Table B.4.

2.3. Applicability domain studies and tR acceptable error windows

The origin of residuals (error) between the experimental and pre-
dicted tR occur mainly due to either errors in the reported tR or che-
mical structural diversity from the training set used to build the model.
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Different methods are available to assess the presence of outliers
[24,32]. A method called “OTrAMS” presented in [24] was developed
to not only define the applicability domain of the models, but also to
decrease the chance of false positive structures in the case of suspect
and non-target screening [24]. This method was established based on
the effect of chemical structural diversity, standardized residuals (SDR)
of predictions and the leverage value of each compound, which is
proportional to the Hotelling T2 and Mahalanobis distance. This ap-
proach provides a quick overview about the origin of errors in tR in-
formation. More details about OTrAMS can be found in the SM (Ap-
pendix A), section SM 2.6.

In addition to OTrAMS, another outlier detection procedure was
developed using Monte-Carlo sampling method (MCS) [33] to under-
stand the origin of errors in tR modelling. It is a robust technique to
detect different kinds of outliers by developing many cross-predictive
models. The results of this procedure are displayed by plotting the
absolute values of mean of predictive residuals (MEAN) versus standard
deviations of predictive residuals (STD). The cut-off limit for MEAN and
STD are defined based on the population density of compounds in the
training set. Scheme 1 shows the interpretation of MCS results. MCS
was set to 5000 iterations. As shown in Scheme 1, four regions are
defined for interpreting outliers; the lower left area (region A) shows
the data that are not outliers; the top left region (region B) of the plot
shows the data points that are outliers due to structural diversity, but
they can be still modelled; the bottom right area (region C) represents
the samples that are outliers due to the observed tR values (the area
where the potential false positives exist); and the top right region (re-
gion D) of the plot displays the outliers due to large structural diversity
and ambiguous observed tR. Cut-off values for MEAN and STD were
determined based on the distribution density of MEAN and STD of the
training set.

MCS was also used to define acceptable error windows for predicted
tR. The strategy used to calculate the acceptable error windows was to
find a threshold where 95% of the MEAN values (in MCS plot) locate.
Therefore, the 95th quantile of MEAN was calculated, which is the mean
of the prediction errors of each sample at 5000 times MCS, and used to

derive the error windows. This approach was further tested on 13 da-
tasets extracted from MassBank spectral records (http://massbank.eu/
MassBank/, last visit July 2018). The details about the LC conditions of
these datasets can be found in supplementary materials (Appendix B)
Table B.5.

2.4. Experimental setup for the generation and identification of TPs of
selected emerging contaminants

Ozonation batch experiments were conducted in sealed bottles by
mixing a predefined amount of ozone saturated solution with an aqu-
eous solution of selected emerging contaminants (tramadol, furosemide
and niflumic acid), following the procedure already described in a
previous study [34]. These compounds are often detected in effluents
(incomplete removal) and the receiving environment [35–37] and data
for their ozonation TPs is scarce. The identification workflow, along
with RPLC/HILIC complementary analyses, is described in [34,38,39].

2.5. Screening of biocides in wastewater and sludge

Eight influent (IWW) and 8 effluent (EWW) wastewater samples (8
consecutive days in March 2017 from the wastewater treatment plant
(WWTP) of Athens, Greece) were analyzed, according to ref. [6], to
study the possible detection of biocides. In addition, 64 sewage sludge
and IWW samples from the same WWTP (sampled again on 8 con-
secutive days in March, period 2010–2017) were also screened. The
sample preparation method used for preparing the sewage sludge and
influent/effluent wastewater samples were given in our previous stu-
dies [6,40]. The screening database, a complete list of biocides and
pesticides (active ingredients), was compiled from regulatory databases
[41–45]. Several other biocidal products such as Quaternary ammo-
nium compounds (QACs) or disinfectants were collected from litera-
ture. [46–48]. The final suspects list includes 273 biocides and active
ingredients of pesticides alongside their chemical identifiers, predicted
tR and three most common and abundant MS/MS fragments from
spectra libraries [49–51]. This suspects list can be found in SM (Ap-
pendix B), Table B.6. The suspect screening workflow is described in
detail in SM (Appendix A), section SM3.

3. Results and discussion

3.1. RPLC-(+)ESI-HRMS

The best set of five molecular descriptors showing high correlation
and prediction accuracy with tR was selected by Genetic Algorithm
(GA). A general linear model for RPLC-(+)ESI-HRMS based on affinity
propagation-GA-MLR was obtained with the following equation:

t logD

CIC SEigZ
RDF p AlogP

2.3518( 0.1335) 0.7371( 0.0204)

1.2389( 0.0696) 1 0.5584( 0.0396)
0.2198( 0.0340) 020 0.4155( 0.0306)

R pH( 3.60)= + ± + ±

+ ± + ±
± + ± (1)

logD is the measure of hydrophobicity for the ionizable compounds,
CIC1 is the Complementary Information Content index (neighborhood
symmetry), SEigZ is the eigenvalue sum from Z weighted distance
matrix of a Hydrogen-depleted Molecular Graph, RDF020p is Radial
Distribution Function weighted by atomic polarizabilities and AlogP is
logP estimated by Ghose–Crippen method [52]. More details about
molecular descriptors selected can be found in supplementary materials
(Appendix A), section SM 4.1.1. The elution of the compounds in RPLC-
(+)ESI-HRMS is illustrated in Fig. A.5.

The proposed model was built based on 1461 compounds in the
training set and validated using the techniques described above, in-
cluding external evaluation on 369 compounds as test set. The statis-
tical parameters introduced in Appendix A (section SM 2.5) are listed in
Table B.7 and the model meets all acceptance criteria. The OTrAMS

Scheme 1. The explanation of Monte-Carlo sampling (MCS) method used to
define the applicability domain of the models developed to predict tR.
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results are shown in Fig. A.6 (a) and demonstrates that no outliers were
present for this training set. Over 70% of the whole dataset was pre-
dicted with the error less than 1.0min (6.67% of LC run time). The
Monte-Carlo cross-validation method [33] described above was ap-
plied, shown in Fig. A.6 (b), indicates that the majority of compounds
are located in Region A. These results suggest that the model is free
from outliers in the training set and is thus well suited for prediction
purposes.

The non-linear model was built using the same training set and
molecular descriptors. The internal parameters of SVM were optimized
based on the RMSE of leave one out cross-validated model as C=50 (a
trade-off parameter), ε =0.2 (insensitive loss function), γ=1.5 (radial
basis function (RBF)). These parameters are discussed in detail in SM
(appendix A) section SM 2.4. The result of each optimization step is
shown in Appendix A, section SM 4.1.3, Fig. A.7 (a–c). The predicted
and experimental tR values are listed in Table B.1 for RPLC-(+)ESI-
HRMS. The comparison results of two models (MLR and SVM) show
that SVM has higher internal and external accuracy for prediction of tR
(Table B.8). The molecular descriptors used here were investigated for
the existence of inter-correlation cases and as listed in Table B.9, no
cases with high inter-correlation were found.

3.2. RPLC-(−)ESI-HRMS

The same workflow was applied to RPLC-(-)ESI-HRMS and the fol-
lowing equation was obtained with eight molecular descriptors selected
by GA:

t XlogP
logD RDF m

Mor p nCconj
MlogP B C C
F Cl Cl

3.9078 ( 0.2255) 0.3016 ( 0.0768)
0.6128 ( 0.0543) 0.1917 ( 0.0543) 130

1.377 ( 0.3291) 16 0.3062 ( 0.0695)
0.1103 (0.0178) 1.588 (0.2461) 06[ – ]
0.6183 (0.1345) 04[ – ]

R

pH( 6.20)

2

= + ± + ±
+ ± + ±

± ±
+ +
+ (2)

XlogP is a measure of logP, logD is a measure of logP for the io-
nizable compounds at pH=6.2, RDF130m is the Radial Distribution
Function weighted by atomic mass, Mor16p is 3D-MoRSE weighted by
atomic polarizabilities, nCconj is the number of non-aromatic con-
jugated C(sp2), MlogP2 is the squared Moriguchi octanol-water parti-
tion coefficient, B06[C-C] is the presence/absence of CeC (carbon-
carbon single bonds) and F04[Cl-Cl] is the frequency of Cl‒Cl in a
chemical graph. More details about these molecular descriptors can be
found in Appendix A, section SM 4.2.1. The overall contribution of
molecular descriptors to explain elution mechanism in (-)ESI-RP-LC-
HRMS was investigated by Principal Component Analysis (PCA) (Fig.
A.8).

The model was developed based on 247 compounds (training set)
and the validation protocols were applied to confirm the predictive
power of the model, including external evaluation on 62 compounds.
The evaluation of statistical parameters introduced in Appendix A
(section, SM 2.5) are listed in Table B.7. OTrAMS demonstrated that no
outliers were detected for the training set (Fig. A.9 (a)). Over 68% and
26% of the whole dataset (training and test set) were predicted with an
error less than 1min (6.67% of LC run time) and 2min (13.34% of LC
run time), respectively. The performance of the –ESI models was lower
than those obtained in+ESI mode, due to the smaller dataset, which
limits the ability to capture the variations in experimental tR for these
compounds. This is inherent to the ionization technique, as fewer
compounds are ionizable in negative mode.

MCS was also used, as described in Section 3.1, to derive the dis-
tribution of compounds based on the origin of their errors. As shown in
Fig. A.9(b), the majority of compounds are in the area with low pre-
diction errors (Region A and B). The results of the outlier detection
methods suggest that the training set is free of outliers and thus the
model is acceptable for prediction purposes.

The non-linear model was also built and compared to affinity pro-
pagation-GA-MLR as described in Section 3.1. The internal parameters
of SVM were optimized to C= 50 (a trade-off parameter), ε =0.08
(insensitive loss function), γ=5 (radial basis function (RBF)). The re-
sult of each optimization step is shown in Fig. A.10(a–c). The predicted
and experimental tR values are listed in Table B.2 for RPLC-(–)ESI-
HRMS. Comparison of the two models (MLR and SVM) reveals that SVM
has high internal and external accuracy for tR prediction (Table B.8).
The molecular descriptors used here were investigated for inter-corre-
lation cases. As shown in Table B.10, no indication of inter-correlation
is present.

3.3. HILIC-(+)ESI-HRMS

The best set of seven molecular descriptors showing high correlation
and prediction accuracy with tR was selected for HILIC by GA. A general
linear model for HILIC-(+)ESI-HRMS based on affinity propagation-
GA-MLR was obtained with the following equation:

t logD

GGI RDF p
H qnmax

MlogP AlogP

2.591( 0.1323) 1.233 ( 0.0227)

0.1051 ( 0.0204) 1 0.2293 ( 0.0384) 020
0.2410 ( 0.0322) –050 1.332 ( 0.1769)
0.0807 (0.0089) 0.8120 (0.0370)

R pH( 3.50)

2

= + ± ±

± + ±
+ ± + ±
+ + (3)

log D is a measure of log P for the ionizable compounds at pH=3.5,
GGI1 is the Radial topological charge index of order 1, RDF020p is
Radial Distribution Function weighted by atomic polarizabilities, H-050
is number of H attached to a heteroatom, qnmax is the maximum ne-
gative charge, while MlogP2 and AlogP are the measures of logP for
neutral compounds [22,53]. More details about these molecular de-
scriptors can be found in SM (Appendix A), section SM 4.3.1. The
contribution of selected molecular descriptors to explain elution me-
chanism in HILIC-(+)ESI-HRMS was investigated by Principal Com-
ponent Analysis (PCA) in Fig. A.11.

The model was built on a training set of 542 compounds. The in-
ternal validation was followed as described in the Section 3.1 and the
external predictive ability of the model was evaluated using a test set of
140 compounds. The statistical parameters for the developed model are
listed in Table B.7. Three outliers (Prometryn, Irgarol-descyclopropyl
and Arginine) were detected by OTrAMS for the test set (Fig. A.12 (a)),
while no outliers were observed for the training set. All in all, more
than 93% of the whole dataset was predicted with an error less than
1min (71%) and 2min (22%). MCS was also used. As shown in Fig.
A.12(b), the majority of compounds are in Region A.

The non-linear model was also built and compared to affinity pro-
pagation-GA-MLR. The internal parameters of the SVM were optimized
as C= 100 (a trade-off parameter), ε =0.01 (insensitive loss function)
and γ=3 (radial basis function (RBF)). The result of each optimization
step is shown in Fig. A.13 (a–c). The predicted and experimental tR
values are listed in Table B.3 for HILIC-(+)ESI-HRMS. Comparison of
the two models (MLR and SVM) indicates that SVM has better internal
and external accuracy for tR prediction (Table B.8). Inter-correlation
results for the selected molecular descriptors are listed in Table B.11.

3.4. Acceptable error windows for predicted tR

In order to define acceptable error windows for predicted tR, ex-
perimental retention time data was retrieved from MassBank. Thirteen
new QSRR models were developed from these data and evaluated by
MCS. The accuracy of the models along with LC conditions and total
number of compounds in each model can be found in Table B.12 in SM
(Appendix B). The strategy described above was used to calculate the
acceptable error windows. Therefore, the 95th quantile of MEAN from
MCS was calculated for each dataset from MassBank. The acceptable
error windows in predicted tR is obtained by the individual MEAN cut-
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off value for each LC condition in 13 dataset. Table B.13 lists the results
of various quantile values and acceptable error windows for each LC
condition and dataset. This error windows is approximately 12% of the
total chromatographic run time or maximum experimental tR used in
the training set during model development. In the view of these results,
MCS is a useful technique to define the confidence intervals for tR
prediction and provides a reasonable confidence for the applicability
domain of the models in case of suspect/non-target screening.

3.5. Comparison with literature models

Several approaches, previously developed and used to predict tR
[10–2124,54–56], were compared with the work presented here, and
are shown in Table B.14. The studies [16,20] that applied non-linear
regression methods (such as Artificial Neural Network (ANN) or SVM)
modelled tR with low prediction errors compared with those models
that were proposed based on linear regression method (i.e. Partial Least
Square (PLS) and MLR) [13,19]. The studies [15,20] that standardized
the geometry of compounds in their tR model were found to be slightly
better (in terms of internal fitting and prediction error) than those
where no standardization steps were used. [12,16,17]. The models
developed here for RPLC/HILIC platforms are based on a large number
of emerging contaminants and offer high prediction accuracy in con-
trast to previous studies [6,13,20,22]. Moreover, the applicability do-
main of the proposed models was carefully defined, which is very
crucial for the removal of false positives, in contrast to two previously
methods that were built based on large set of emerging contaminants
but with no defined applicability domain [15,20].

3.6. Application of tR prediction in the identification of transformation
products

All developed models were used for the identification of some new
ozonation TPs of emerging contaminants. tR prediction was used either
for enhancing the identification confidence of proposed TPs structures
or finding the elution order of isomeric TPs structures.

Three series of ozonation experiments were conducted where the
transformation of tramadol (TRA), furosemide (FUR) and niflumic acid
(NA) was investigated, following suspect and non-target workflows [6].
Among the identified TPs of TRA after RPLC-(+)ESI-HRMS analysis,
TRA-218 and TRA-282 were structurally elucidated based on the in-
terpretation of their MS/MS spectra (Fig. A.14(a) and A.14(b), respec-
tively). The proposed structures were highly supported by the tR pre-
diction results, since an error of 0.22 and -0.48min, respectively, was
derived (Table 1). Moreover, three isomeric TPs of TRA (with m/z 296)
were detected at 3.5, 4.5 and 4.8 min. Based on common reactions
between TRA and ozone, three possible structures could fit the pro-
posed formula, following Criegee mechanism reaction. As displayed in
Fig. A.14(c), the MS/MS spectra of the three isomers were almost
identical and no diagnostic fragments were detected. The tR prediction
contribution to the identification workflow was significant, since it

indicated a distinct chromatographic separation of the three proposed
structures, and the experimental tR were in accordance with the pre-
dicted one, with errors ranging from -0.29 to 0.21min (Table 1). Thus,
based on the tR prediction results, the identification of these three
isomers (with estimated elution order), reached level 2b of identifica-
tion confidence [5]. In the case of FUR ozonation TPs, several TPs were
detected by RPLC-(-)ESI-HRMS analysis. Among them, FUR-276, eluted
at 3.0 min, was structurally elucidated based on the characterization of
its fragments obtained though HRMS analysis (Fig. A.15(a)). The pro-
posed structure was further supported by the good fitting between the
experimental and the predicted tR (error of 0.21min) and MCS plot
reaching to level 2b (Table 1). Moreover, a TP of FUR with m/z 288,
eluted at 3.80min, was detected. Due to the low intensity of this TP, the
acquisition of data dependent MS/MS spectra was not feasible, whereas
the full MS/MS spectra was noisy and provided no information that
could lead to structure elucidation (Fig. A.15(b)). The proposed struc-
ture was included in the suspect FUR TPs (possible to be formed during
the ozonation of FUR). Although the predicted tR (-0.24min error) was
matching to the experimental one and it was in region A of MCS plot
(Table 1), the level of identification was remained at 3, due to poor MS/
MS spectra. Last but not least, tR prediction was proven helpful in the
identification of three isomeric hydroxylated TPs of NIF, eluted at 6.4,
8.1 and 8.9 min. Although an unequivocal formula could be proposed
for the three isomers, their fragmentation pattern did not include any
characteristic fragments to indicate the exact position where the hy-
droxylation took place (Fig. A.16). The tR prediction highly supported
the identification of specific isomers, since the predictions were in-
dicative for the proposed structures, and were identical to the experi-
mental ones (errors from -0.23 to 1.02min) (Table 1).

3.7. Application of tR prediction for the identification of biocides

The models developed here were applied to the suspect screening of
over 273 biocides and active ingredients of pesticides in sewage sludge
and wastewater samples. Nine target biocides, were treated as suspects
and used for validation of the proposed screening workflow, including
tR prediction and MCS plot. The validation results are presented in SM
4.4.2. The identification methodology can be exemplified for the case of
5-Methylbenzotriazole (Fig. 1). Based on the mass accuracy, isotopic
fitting and chromatographic peak score (Fig. 1(a)), two substances were
met these conditions (5-Methylbenzotriazole and 2-Aminobenzimida-
zole), including the interpretation of MS/MS fragments using in silico
fragmentations tools (Fig. 1(b)). The HILIC tR prediction model could
help to prioritize these suspects according to their degree of MEAN
value in MCS plot (Fig. 1(c)). The spectra of reference standard was
found in MassBank (SM880101) and the fragments (Fig. 1(d)) at m/z
53.0383, 79.0540, 80.0572, 95.0485, 105.0437, 106.0646 and
134.0707 fit very well with the prioritized suspect (5-Methylbenzo-
triazole), corresponding to [C4H5]+, [C6H7]+, [C5H6N]+, [C6H7O]+,
[C6H5N2]+, [C7H8N]+, and [C7H8N3]+, respectively. Therefore, the
identification was confirmed by tR prediction, MCS plot, MS/MS

Table 1
Retention time prediction results for the identification of ozonation transformation products of emerging contaminants.

Analysis Parent compound Transformation product tR experimental (min) tR predicted (min) tR error (min) Applicability Domain

RPLC-(+)ESI-HRMS Tramadol TRA-218 3.31 3.53 0.22 Region A (MCS): accepted
TRA-296 a 3.54 3.75 0.21 Region A (MCS): accepted
TRA-296 b 4.50 4.29 −0.21 Region A (MCS): accepted
TRA-296 c 4.81 4.52 −0.29 Region A (MCS): accepted
TRA-282 3.72 3.24 −0.48 Region A (MCS): accepted

RPLC-(−)ESI-HRMS Furosemide FUR-276 3.04 3.25 0.21 Region A (MCS): accepted
FUR-288 3.80 3.56 −0.24 Region A (MCS): accepted

RPLC-(+)ESI-HRMS Niflumic acid NIF-299 a 6.42 6.19 −0.23 Region A (MCS): accepted
NIF-299 b 8.10 7.08 −1.02 Region A (MCS): accepted
NIF-299 c 8.91 8.89 −0.02 Region A (MCS): accepted
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comparison (spectra similarity score of 0.998), and further by corre-
sponding reference standard reaching to level 1.

26 biocides were identified through suspect screening, including dif-
ferent classes such as preservatives, disinfectants, repellents, veterinary
hygiene and quaternary ammonium compounds (QACs). Four candidates
for two other ions (m/z 214.2539 and 242.2842) (QACs:
Undecyltrimethylammonium (ATMAC-11) and Ethyldecyldi
methylammonium (DADMAC-2:10); Tridecyltrimethylaminium (ATMAC-
13) and Butyl-decyl-dimethyl-ammonium (DADMAC-4:10)) were identified
and reported for the first time via non-target screening strategy. Table 2
provides the list of 28 identified biocides in the influent/effluent wastewater
and sewage sludge samples from WWTP of Athens.

Among the suspect screening of biocides and the identification re-
sults, several homologous series (QACs) have been detected (n=13).
The fragmentation of these homologous was straightforward where, for
instance, the benzylic amine bond breaks in Benzyl-dimethyl-n(alkyl-
chain)-ammonium chloride (BAC-n(the alkyl chain number) and leads
to the diagnostic ion at m/z 91.0542, known as the tropylium ion, and
the related fragments corresponding to the unique alkyl chain sub-
structure for each one of the homologous [57]. BAC-10, BAC-12, BAC-
14 and BAC-16 were identified successfully considering the tR predic-
tion models, MCS plot, observing the diagnostic ion at m/z 91.0542 as
well as matching the list of observed fragments to those previously
reported in the literature. Therefore, the identification reached to level
2a. The full identification procedure, including the extracted ion
chromatogram, MCS plot as well as MS/MS fragmentation can be found
in Table B.15. (n-Alkyl)-trimethyl-ammonium (ATMACs) homologous
series were also detected and identified through tR prediction model
and MS/MS fragmentation pattern. Breaking the bonds in ATMACs
homologous leads to the diagnostic ion at m/z 60.0807 which is tri-
methyl-ammonium ion [48]. ATMAC-12, ATMAC-14, ATMAC-16 and
ATMAC-18 were identified at level 2a, as the predicted tR was matching
to the experimental one (MCS plot) and the MS/MS fragmentation

pattern was similar to those that reported in the literature [48]. For
these 4 ATMACs, the diagnostic ion was observed at high intensity and
the MS/MS spectra was easily interpretable. However two other AT-
MACs (ATMAC-10 and ATMAC-20) did not present this diagnostic ion
at high intensity and the MS/MS spectra was not clear. Therefore, these
two QACs were tentatively identified at a level of identification 3.
Another set of abundant homologous (paired and mixed di(n-alkyl)di-
methylammonium (DADMAC)) were detected in the sewage sludge
samples. Two paired DADMACs (Dioctyldimethylammonium bromide
(DADMAC-8:8) and Didecyldimethylammonium bromide (DADMAC-
10:10)) as well as a mixed DADMAC (Dimethyloctyldecylammonium
bromide (DADMAC-8:10)) were tentatively identified at level of 2a, 3
and 2a, respectively. The predicted tR and MCS plot were acceptable for
the DADMAC-8:8 and DADMAC-8:10 and their MS/MS fragments were
explicable among which two fragments (m/z 158.1896 and m/z
186.2201) were matching to the reported ions in the literature [48].
DADMAC-10:10 was also tentatively identified at level of identification
3 after observing only a single diagnostic fragment (m/z 186.2209) and
predicted tR match.

Through non-target screening two new QACs have been found at m/
z 214.2539 and 242.2842. For the ion 214.2539, 60 candidates were
retrieved from PubChem after applying mass accuracy and isotopic fit
filter. MetFrag was used to prioritize these 60 candidates based on their
explained MS/MS fragments. Having used tR models and MCS plot, two
most probable candidates were ATMAC-11 or DADMAC-2:10. ATMAC-
11 was then assigned to this ion due to the lower tR prediction error
than DADMAC-2:10, however the diagnostic ion for ATMAC homo-
logous (m/z 60.0807 which is trimethyl-ammonium ion) was not ob-
served in the MS/MS spectra. Therefore, it is tentatively identified at
the level of identification 3 (list of explained MS/MS fragments for m/z
214.2539, based on in silico fragmentation tool (MetFrag), can be found
in Table B.16). For the ion 242.2842, 74 candidates were retrieved from
PubChem, and after applying all identification procedure said above,

Fig. 1. Identification of 5-Methylbenzotriazole: (a) full MS chromatogram for the given mass ( ± 5 ppm); (b) MS/MS spectra and corresponding fragments; (c) MCS
plot for evaluating the predicted tR values; (d) confirmation step using spectra library. 5-Methylbenzotriazole was confirmed by reference standard later.
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two most probable candidates (ATMAC-13 and DADMAC-4:10) were
assigned to this m/z. ATMAC-13 was assigned to this ion due to the
lower tR prediction error than DADMAC-4:10, however some more
evidence are required to confirm this structure. Therefore, ATMAC-13 is
tentatively identified at the level of identification 3 (list of explained
MS/MS fragments for m/z 242.2842, based on in silico fragmentation
tool (MetFrag), can be found in Table B.17). These new detected QAC
homologous were also found at high abundance in IWW and EWW.
Further investigations on the occurrence and fate of these newly iden-
tified water soluble ATMACs and mixed DADMACs, as well as the po-
tential ecological effects of QACs are still warranted and it will be the
subject of further studies in order to better evaluate their behavior in

the environment.

4. Conclusions

Robust tR prediction models have been developed based on a large
number of emerging contaminants for two chromatographic systems
(RPLC) and HILIC) in two electrospray ionization modes. The non-
linear models (SVM) showed high internal and external accuracy and
accurate prediction results for suspect screening purposes. A new
method, based on Monte Carlo Sampling (MCS), was developed to de-
fine the confidence intervals in tR prediction. This technique in-
corporates the effect of chemical structures and their similarities

Table 2
List of identified biocides in influent, effluent wastewater (IWW & EWW) and sewage sludge of wastewater treatment plants (WWTP) of Athens (Greece).

Compound Name CAS No. Class of Biocide Measured m/z Exp. tR
(Pred. tR)
(min)

LC-HRMS platform Identified in Level of
identification
confidence

Azoxystrobin 131860-33-8 Preservatives 404.1250 8.89 (9.02) RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

1

5-Methylbenzotriazole 29878-31-7 Benzotriazoles 134.0710 1.62 (1.61) HILIC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

1

DEET 134-62-3 Repellents &
attractants

192.1392 8.02 (7.99) RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

1

Fluometuron 2164-17-2 Herbicide 231.0756 7.92 (8.07) RPLC-(-ESI)QTOF-MS Sewage Sludge,
IWW& EWW

1

Fludioxonil 131341-86-1 Preservatives 247.0324 9.71 (8.16) RPLC-(-ESI)QTOF-MS Sewage Sludge 1
Triclocarban 101-20-2 Cleaning products 312.9711 12.06

(11.17)
RPLC-(-ESI)QTOF-MS Sewage Sludge 1

Benzoic acid 65-85-0 Veterinary hygiene 121.0291 4.70 (3.59) RPLC-(-ESI)QTOF-MS Sewage Sludge,
IWW & EWW

1

Lauric acid 143-07-7 Repellents &
attractants

199.1706 11.64
(10.28)

RPLC-(-ESI)QTOF-MS Sewage Sludge,
IWW & EWW

3

Decanoic acid 334-48-5 Repellents &
attractants

171.1391 9.69 (8.84) RPLC-(-ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Pelargonic acid 112-05-0 Disinfectants &
algaecides

157.1234 8.76 (8.27) RPLC-(-ESI)QTOF-MS Sewage Sludge,
IWW & EWW

3

Terbutylazine 5915-41-3 Herbicides 230.1161 9.32 (9.26) RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

1

Ketoconazole 65277-42-1 Fungicides 531.1560 9.69 (10.32) RPLC-(+ESI)QTOF-MS Sewage Sludge 2a
Climbazole 38083-17-9 Fungicides 293.1055 9.84 (9.98) RPLC-(+ESI)QTOF-MS Sewage Sludge,

IWW & EWW
1

Benzyldimethyldecyl ammonium
chloride (BAC-10)

965-32-2 QACsa 276.2695 10.10
(10.59)

RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Benzyldimethyldodecyl ammonium
chloride (BAC-12)

139-07-1 QACsa 304.3004 11.49
(11.11)

RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Benzyldimethyltetradecyl ammonium
chloride (BAC-14)

139-08-2 QACsa 332.3311 12.58
(11.82)

RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Benzyldimethylhexadecyl ammonium
chloride (BAC-16)

122-18-9 QACsa 360.3625 13.46
(12.30)

RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Decyltrimethyl ammonium bromide
(ATMAC-10)

2082-84-0 QACsa 200.2370 11.24 (8.45) RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

3

Dodecyltrimethyl ammonium bromide
(ATMAC-12)

1119-94-4 QACsa 228.2682 10.96 (8.83) RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Tetradecyltrimethyl ammonium
bromide (ATMAC-14)

1119-97-7 QACsa 256.2998 12.21
(10.13)

RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Hexadecyltrimethyl ammonium
bromide (ATMAC-16)

57-09-0 QACsa 284.3314 13.46
(12.22)

RPLC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

2a

Trimethyloctadecyl ammonium
bromide (ATMAC-18)

1120-02-1 QACsa 312.3631 14.24
(12.16)

RPLC-(+ESI)QTOF-MS Sewage Sludge 2a

Eicosyltrimethyl ammonium bromide
(ATMAC-20)

7342-61-2 QACsa 340.3934 14.94
(12.20)

RPLC-(+ESI)QTOF-MS Sewage Sludge 3

Dioctyldimethyl ammonium bromide
(DADMAC-8:8)

3026-69-5 QACsa 270.3159 11.09
(10.54)

RPLC-(+ESI)QTOF-MS Sewage Sludge 2a

Didecyldimethyl ammonium bromide
(DADMAC-10:10)

2390-68-3 QACsa 326.3788 13.12
(12.54)

RPLC-(+ESI)QTOF-MS Sewage Sludge 3

Dimethyloctyldecyl ammonium
bromide (DADMAC-8:10)

N.A. QACsa 298.3471 12.28
(11.58)

RPLC-(+ESI)QTOF-MS Sewage Sludge 2a

ATMAC-11 / DADMAC-2:10b N.A. QACsa 214.2530 5.94 (5.79 &
5.44)

HILIC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

3

ATMAC-13 / DADMAC-4:10b N.A. QACsa 242.2845 5.88 (5.92 &
5.94)

HILIC-(+ESI)QTOF-MS Sewage Sludge,
IWW & EWW

3

a Quaternary Ammonium Compounds (QACs).
b Identified through non-target screening workflow.
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compared with the training set to reduce the number of false positives
or eliminate the wrong chemical structures assigned for the observed tR.
These models were applied in the suspect and non-target screening of
transformation products (TPs) of three emerging pollutants (tramadol,
furosemide and niflumic acid). Ten new TPs were tentatively identified
using the tR models and in silico fragmentation and the results proved
the value of tR prediction for newly identified TPs where the reference
standards were difficult or impossible to obtain. The tR models and MCS
plot were also used to support the identification of 28 biocides in IWW,
EWW and sewage sludge collected from WWTP of Athens. Most of the
identified biocides were found to be present in EWW, with a predicted
biodegradation half-time of 3–17 days (pseudo-persistent compounds).
Two new quaternary ammonium compounds (QACs) were also tenta-
tively identified via non-target screening strategy.
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