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A B S T R A C T

An optimized and validated LC-ESI-QTOF-MS method with an integrated non-target screening workflow was
applied in the investigation of the metabolomic profile of 51 Greek monovarietal extra virgin olive oils (EVOOs)
from the varieties: Manaki, Ladoelia, Koroneiki, Amfissis, Chalkidikis and Kolovi. Data processing was carried
out with the R language and XCMS package. A local database consisting of 1608 compounds naturally occurring
in different organs of Olea Europa L. was compiled in order to accelerate the identification workflow. The
preliminary examination of the distribution of EVOOs toward their cultivars was achieved by Principal
Component Analysis (PCA). Ant Colony Optimization-Random Forest (ACO-RF) was developed to prioritize over
250 features and to establish a classification tree. Apigenin, vanillic acid, luteolin 7-methyl ether and oleocanthal
were suggested as the markers responsible for the classification of Greek EVOOs’ cultivars.

1. Introduction

The importance of phenolic compounds is related to their anti-
oxidant activity and to their contribution to health benefits associated
with extra virgin olive oil (EVOO) consumption (Ghanbari, Anwar,
Alkharfy, Gilani, & Saari, 2012). EVOO composition determines its in-
trinsic quality and could be influenced by several factors, including
agronomical and technological factors, such as olive cultivar (Tura
et al., 2007), the climate (Baccouri et al., 2008), the degree of ma-
turation (Cerretani et al., 2005), crop season (Alkan, Tokatli, & Ozen,
2011) and the production process (Alkan et al., 2011). However, geo-
graphical area is greatly responsible for the specific characteristics of
EVOOs (Petrakis, Agiomyrgianaki, Christophoridou, Spyros, & Dais,
2008). Olive cultivars, the geographical region along with environ-
mental factors have been reported as the main parameters affecting the
chemical profile of EVOOs dominantly (Bajoub et al., 2016; Ballus
et al., 2015).

The olive tree (Olea Europaea L.) has diverged naturally to many
cultivars and is cultivated mainly in the Mediterranean region; Spain,
Italy, Greece, Tunisia, Turkey, Morocco and Algeria (Bakhouche et al.,
2013). The cultivar defines the quality of the drupe and the olive oil
(Kosma et al., 2016). Greece is among the leading olive producing
countries of the world, ranked third after Spain and Italy. The number
of Greek cultivars is greater than 40 and more than 90% of the territory

is cultivated with 20 cultivars. Olive oil produced in Greece has ex-
cellent quality and this is because of the local climatic and soil condi-
tions. According to the International Olive Oil Council (http://www.
internationaloliveoil.org), 70% of Greek production is categorized as
EVOO while almost the 35% is exported. Thus, it is imperative for
Greece to characterize and authenticate EVOOs based on cultivar and
geographical origin in an effort to establish a brand name in the in-
ternational market.

The European Union has adopted a series of regulations providing
guidelines to maintain the Protected Designation of Origin (PDO) and
Protected Geographical Indication (PGI). These include characteriza-
tion of olive oils based on cultivar and geographical origin to reassure
that the quality of the product is closely linked to its territorial and
botanical origin and consequently to increase its market value (Council
Regulation (EC) No. 510/2006). This regulation states that there is an
economic basis for the identification of markers that distinguish PDO
EVOOs. Thus, there is an understanding need to enforce the above
regulation and develop analytical methods for the authentication of
EVOOs and to reassure that the product is closely linked to its territorial
origin.

During the past decade, there have been intensive studies for the
determination of the cultivar of EVOOs on the basis of different olive oil
constituents, including fatty acids, triacylglycerols, sterols, volatiles and
phenolic compounds with different analytical methodologies, such as
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Liquid Chromatography-Mass Spectrometry (LC-MS) (Bakhouche et al.,
2013) LC coupled to Time of Flight (TOFMS) (Ballus et al., 2015), Gas
Chromatography (GC) coupled to Flame Ionization Detector (FID)
(Karabagias et al., 2013) and MS (Longobardi et al., 2012; Pouliarekou
et al., 2011), Nuclear Magnetic Resonance (NMR) (Petrakis et al., 2008)
and HPLC coupled to UV (Allalout et al., 2009). Most of these methods
combined chemometrics, as complimentary tool. Recently, Bajoub et al.
(2017) made an interesting effort applying k-Nearest Neighborhood (k-
NN), Partial Least Square-Discriminant Analysis (PLS-DA) and Soft In-
dependent Modeling of Class Analogies (SIMCA). It was concluded that
the application of LC coupled to chemometrics, for data treatment, can
define the EVOOs varieties with acceptable accuracy. This study,
however, could not address the important markers and their contribu-
tion behind the classification models. In this field, the literature survey
indicates gaps in information, which should be filled in the near future.

LC coupled to High Resolution Mass Spectrometry (HRMS) followed
by non-target screening strategies and chemometrics could fulfill this
gap. LC-HRMS has been widely applied to analyze complex mixtures
with wide polarities owing to its high separation efficiency and sensi-
tivity in the identification of compounds at low concentration levels.
Recently, this method was successfully applied in two authenticity
studies of EVOOs concerning the organoleptic profile (Kalogiouri,
Alygizakis, Aalizadeh, & Thomaidis, 2016) and the production type
(Kalogiouri, Aalizadeh, & Thomaidis, 2017), suggesting markers. One
important step in non-target HRMS methods is the prioritization of MS
features. In our previous works, two different prioritization tools were
introduced to prioritize the MS features and extract the markers;
Variable Importance in Projection (VIP) for the suggestion of markers
and discrimination between defective olive oils and EVOOs (Kalogiouri
et al., 2016) and Ant Colony Optimization-Random Forest (ACO-RF) for
the classification of conventional and organic EVOOs. A simple and
robust decision tree was established and could define production type
and guarantee EVOOs authenticity. The decision tree based approach
coupled to High Resolution Mass Spectrometry (HRMS) could open new
horizons in authenticity studies in the foodomics field.

The objective of this study was to apply a novel, optimized and
validated reversed-phase ultra-high-performance liquid chromato-
graphy coupled to electrospray ionization-quadrupole-time-of-flight
mass spectrometric (RP-UHPLC-ESI-QTOF-MS) method, using an in-
tegrated non-target screening workflow for the investigation of the
whole metabolome of EVOOs via non-target screening and the identi-
fication of markers in extra virgin monovarietal Greek olive oils. For
this purpose, 51 monovarietal Greek EVOOs labelled as Amfissis,
Manaki, Kolovi, Koroneiki, Ladoelia and Chalkidikis produced during
the harvesting period 2015-2016 were acquired from different regions
in Greece. In data processing, peak picking was carried out using the R
language and V-WSP algorithm was used as an unsupervised variable
reduction method to decrease the number of the features. A newly-in-
troduced algorithm, Ant Colony Optimization (ACO) was applied as a
feature selection technique and revealed efficiently only the meaningful
masses (m/z) that contribute to the classification. Non-target identifi-
cation workflow was applied, and in order to accelerate the identifi-
cation task, a local database consisting of 1608 compounds commonly
occurring in Olea Europa L. organs and olive oil was compiled, in-
cluding, molecular formulas, monoisotopic mass information, mole-
cular ions in negative and positive ionization, chemical identifiers to-
gether with references was compiled from FooDB (FoodB, The Food
Components Database; http://foodb.ca/.) to accelerate the identifica-
tion of the unknown masses. Finally, RF was employed to classify the
EVOOs according to their varieties.

2. Experimental Section

2.1. Chemicals and standards

All standards and reagents were of high-purity grade (> 95%).

MeOH of LC-MS grade and sodium hydroxide (> 99%) were purchased
from Merck (Darmstadt, Germany). Ammonium acetate (≥99.0%) for
HPLC and formic acid (LC-MS Ultra) were purchased from Fluka
(Buchs, Switzerland). Isopropanol was acquired from Fisher Scientific
(Geel, Belgium). Distilled water was provided by a Milli-Q purification
apparatus (Millipore Direct-Q UV, Bedford, MA, USA). Syringaldehyde
98% was acquired from Sigma-Aldrich (Stenheim, Germany) and used
as an internal standard. Oleuropein 98%, vanillic acid 97% and pi-
noresinol 95% were purchased from Sigma-Aldrich (Stenheim,
Germany) and luteolin 98% was purchased from Santa Cruz
Biotecnologies. Apigenin (4,5,7 trihydroxyflavone) 97% and tyrosol (2-
(4-hydroxyphenyl)ethanol) 98% were purchased from Alfa Aesar
(Karlsruche, Germany). Stock standard solutions of individual com-
pounds (1000mg L−1) were solubilized in methanol and stored at
−20 °C in dark brown glass. All intermediate standard solutions con-
taining the analytes were prepared by dilution of the stock solutions in
methanol.

2.2. Sampling

51 monovarietal EVOOs belonging to five different cultivars were
collected from local producers from various regions in Greece. Taking
into consideration that the harvest period and the production proces-
sing affects the phenolic profile of the EVOOs, all EVOOs under study
were collected between December and January 2015–2016. All the
samples acquired were cultivated with conventional type of farming,
and they were processed with three phase centrifugation technique.
Grinding mills were used for grinding in all cases, and the malaxation
time was between 45 and 60min. In total, 11 samples of the variety
Kolovi from Lesvos Island, 9 samples of Chontrolia Chalikidikis, 5
samples of Amfissis, 17 of Koroneiki (8 samples were acquired from
Crete and 9 of Peloponnese) 4 samples of Ladoelia and 5 samples of
Manaki. Table S1 in the Supplementary Material summarizes the geo-
graphical origin of the samples. All samples were collected and stored
in dark glass bottles, protected from light and humidity. Nitrogen was
inserted as an inert gas to better preserve olive oils and increase the
resistance to autoxidation.

2.3. Sample extraction

Sample preparation was carried out using liquid liquid Micro ex-
traction (LLME) as it has been previously described by our group
(Kalogiouri et al., 2017), using MeOH:H2O (80:20, v/v) as the extrac-
tion solvent. Finally, 5 μL of the extract was injected into the chroma-
tographic system. Procedural blanks were prepared and processed in
the chromatographic system to detect any potential contamination.

2.4. Quality control

Quality control (QC) samples were prepared to confirm that the
analytical system has been stabilized before the batch of samples and to
evaluate its performance. The quality control sample was prepared by
mixing EVOO aliquots and was spiked with a standard solution mix
(2mg L−1) that comprised vanillic acid, oleuropein, luteolin and pi-
noresinol, so that the final concentration of the QC sample was
1mg L−1. It was injected at the beginning of the analysis (five times for
conditioning), and afterwards, it was injected at regular intervals (every
ten sample injections). The %RSDs for the peak areas of the standard
compounds were less than 5% (n=10). The retention time shift was in
the range 0.09–0.23% RSD (n= 10) and mass error was less than
0.28 ppm (n= 10), confirming the good performance of the analytical
system. The quality control results are summarized in Supplementary
Material, Table S2.
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2.5. Instrumental analysis

The conditions of the Reversed Phase (RP) chromatographic ana-
lysis using a UHPLC system with an HPG-3400 pump (Dionex UltiMate
3000 RSLC, Thermo Fisher Scientific, Germany) using an Acclaim RSLC
C18 column (2.1×100mm, 2.2 µm) purchased from Thermo Fisher
Scientific (Driesch, Germany) with a pre-column of ACQUITY UPLC
BEH C18 (1.7 μm, VanGuard Pre-Column, Waters (Ireland)), as well as
the operation of the Q-TOF mass spectrometer (Maxis Impact, Bruker
Daltonics, Bremen, Germany) in negative electrospray ionization mode,
have been already described in a previous work of our research group
(Kalogiouri et al., 2017).

2.6. Method validation

The validation procedure of the RP-UHPLC-ESI-QTOF-MS method
has already been described in a previous work of our group (Kalogiouri
et al., 2017). Standard addition curve was constructed for the quanti-
fication of vanillic acid. The standard compound was spiked in real
EVOO samples at concentrations between 0.02 and 10mg kg−1 (10
calibration levels with 3 replicates at each level). The calibration curve
was constructed with the use of the peak area of the spiked analyte
subtracted by the peak area of a neat sample and divided by the peak
area of the internal standard (syringaldehyde 1.30mg kg−1). Limits of
detection (LODs) and limits of quantification (LOQs) were calculated at
the lowest concentration range of the analytes (0.02–1mg kg−1), ac-
cording to the following equations:

=
×LOD S
b

3.3 a
(1)

=
×LOD S
b

10 a
(2)

where: Sa is the standard error of the intercept (a) and b is the slope of
the calibration curve. For vanillic acid, LOD was calculated
0.031mg kg−1 and LOQ 0.095mg kg−1.

2.7. Non-target screening protocol

All 51 samples analyzed were converted to mzXML files using
ProteoWizard. Further on, these files transferred to R environment to
perform peak picking. Among the peak picking workflows (Smith,
Want, O'Maille, Abagyan, & Siuzdak, 2006; Tengstrand, Lindberg, &
Åberg, 2014), XCMS has been widely used in LC-HRMS data processing,
owing to high efficiency of centWave algorithm, which is proved to have
high performance due to its robust and sensitive detection of potential
region-of-interesting mass traces (ROIs). Moreover, noise and baseline
correction can be estimated locally for each ROIs offering high F-score
(combined measure of recall and precision, calculated from the ground
truth features). XCMS has three main internal parameters of ppm (which
is the tolerated mass deviation), minimum and maximum chromato-
graphic peak width, and snthresh ratio which defines the chromato-
graphic signal-to-noise threshold. Preferably, prefilter (the threshold for
an m/z to be considered as a peak if it appears in k consecutive scan at J
intensity threshold (k,I)) can be applied to discard false peaks in de-
tected ROIs. A general peak picking workflow also needs an additional
step of retention time correction and alignment (here we used the non-
linear retention time alignment wrapping algorithm by loess) as well as
peaks group across samples. Filling any missing peaks across samples
and the also annotation of extract m/z features are highly needed to
prevent adducts/isotopic peaks to cofound with their molecular ions.
Here we optimized ppm (23.3), minimum (17.5) and maximum (40)
peak width using IPO package in R environment (Libiseller et al.,
2015). Signal-to-noise threshold was also set at default value of 10, and
prefilter was adjusted at 3-1000. The response surface of these para-
meters can be found in the Supplementary Material, Fig. S1.

Annotations of selected peaks were also done using CAMERA package.
A matrix of 51 samples and 287 features (m/z) was generated based on
the optimized XCMS object and proceeded to identification and de-
velopment of classification model. For further identification of these
peaks, a new prioritization tool so called Ant Colony Optimization
(ACO) was used to limit the searching space of m/z from 287 to least 4
ones.

Afterwards, the non-target screening workflow was applied. This
workflow involves the identification of the selected peaks according to
mass accuracy (less than 5 ppm) and isotopic pattern of the precursor
ion (less than 100 mSigma), their fragmentation pattern, and the re-
tention time of the chromatographic peak. Extracted ion chromato-
grams (EICs) were obtained and MS/MS spectra were examined and
interpreted. “SmartFormula Manually” tool was applied in Data
Analysis 4.1 (Bruker Daltonics, Bremen, Germany) to assign plausible
molecular formula(s) to the mass of interest and suggest elemental
compositions of the precursor and fragment ions. Then, the prepared
local database consisting only the metabolites and natural products that
commonly occur in olives or olive oil was uploaded in Metfrag (Wolf,
Schmidt, Muller-Hannemann, & Neumann, 2010). Then, the exact mass
and molecular formula were inserted and the mass error for searching
the chemical database was set to 5 ppm. Moreover, the MS/MS frag-
ments with relative intensity were added to elucidate the best candidate
(s). Further on, the chromatographic retention time of the tentative
candidates was predicted using an in silico approach that is based on
quantitative structure retention relationships (QSRR) (Aalizadeh,
Thomaidis, Bletsou, & Gago-Ferrero, 2016).

The level of confidence achieved in the identification of the detected
compounds was established according to Schymanski et al. (2014) to
ease the communication of identification confidence. Initially, a mass
(m/z) of interest corresponding to an unknown compound starts at
Level 5 (exact mass of interest). If it is possible to unambiguously assign
a molecular formula to this m/z, then it will be upgraded to level 4
(unequivocal molecular formula). If there is sufficient MS (exact mass,
isotope or adducts) and experimental information (eg. tR), non-target
components can gain in confidence through level 3 (Tentative Candi-
date). This level indicates that evidence exists for one or more possible
structure(s), but insufficient information is available to eliminate other
possible structural candidates (isomers etc.). Nonetheless, if there is a
spectral library match for one single structure or if diagnostic evidence
is present to exclude all other possible structures from consideration,
the compound can reach level 2 (probable structure). Level 2 includes
two sublevels; level 2a eg. evidence by matching MS/MS information
with literature or spectral library and level 2b denotes diagnostic evi-
dence, such as agreement between predicted and experimental tR. Fi-
nally, if the structure can be confirmed via appropriate measurement of
a reference standard with MS, MS/MS fragments and tR matching, level
of identification is 1.

2.8. Database preparation

A database consisting of 1608 compounds commonly occurring in
different organs and by-products of the olive tree, Olea Europa L., such
as drupes, stems, leaves, olive oil etc. was compiled from FooDB. This
database including chemical identifiers, predicted retention time and
MS information can be found in the Excel Supplementary Material. This
list was chemically curated (removing the duplicates, metals, salts,
solvents and ambiguous bonding between atoms), following eight main
steps (Aalizadeh, von der Ohe & Thomaidis, 2017): (1) the initially
retrieved chemical identifiers (CAS number or SMILES) were unified
into InChI; (2) 2D structures of the InChI were created and the dative
bonds (e.g. nitro group) were standardized using Open Babel (http://
openbabel.org/docs/current/) (O'Boyle et al., 2011); (3) salts, metals
and solvents were removed from the chemical structure; (4) the octect
number was fixed and hydrogens were added; (5) 2D structures were
created using Open Babel and 3D structures were obtained out of
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various tautomer forms (the tautomer with the lowest energy was re-
tained to get one structure out of different forms of a duplicate entries)
using Balloon (Vainio & Johnson, 2007); (6) A SDF file with optimized
3D structures for all entries was created; (7) optimized InChI chemical
identifier were derived from the SDF file; (8) duplicates were identified
and removed by comparing their optimized InChI from the SDF file.
This list can be directly used in MetFrag (Wolf et al., 2010) to elucidate
the structure more appropriately and relevantly than other databases,
by limiting the searching space to compounds that occurring in olive/
olive oil. The compiled database includes the monoisotopic mass,
[M+H]+ and [M−H]−, predicted retention time (tR), molecular for-
mula and chemical identifiers together with reference.

2.9. Data processing

Using only annotation results created by CAMERA package and
excluding molecular ion adducts may not be as effective as removing
them based on their intercorrelation profile. In other words, retaining
adducts in the final list of m/z features and keeping track of their re-
spective molecular ion is better if the adducts give reasonably high
intensity. To further prevent the highly cofounded features prior per-
forming the classification model, V-WSP algorithm was used as an un-
supervised variable reduction method (Ballabio et al., 2014). This
method allows the selection of a representative set of variables based on
linear correlation (here we set the correlation threshold to 0.8), so that
multicollinearity and redundant information in the data can be re-
duced. Using V-WSP, the features were reduced from 287 to 250.

2.10. Ant Colony Optimization (ACO)

The use of a feature selection technique with a fitness function (in
this case, it is the misclassification in 51 olive oil samples) can effi-
ciently reveal only the meaningful m/z that contribute to the classifi-
cation. Further prioritization of m/z was done by ACO. ACO is a swarm
intelligence algorithm that is based on the behavior of the ants
searching for the food resources using pheromone deposition (Dorigo,
Birattari, & Stützle, 2006; Dorigo & Blum, 2005). This enables ants to be
adoptable to any environmental changes, and find a new shortest path
to the resources (Dorigo & Blum, 2005). ACO is preferably a good
method to handle features selection related problems because ants can
derive the best combination of subsets that has the minimum fitness
objective (here is the miss-classification error). In a typical ACO based
features selection case, the algorithm begins with the generation of
certain number of ants (here we set this at 100 ants) placed randomly
on the graph, which represents the possible combinations of every m/z.
Thus, each node (in a graph) relates to a m/z, and each edge shows the
traversal of an ant from one m/z to another. The number of artificial
pheromone [0,1] for an edge is associated with the popularity of the
particular traversal by previous ants. Therefore, ants could make
probabilistic decisions to stay at which node and select which edge,
based on the artificial pheromone and related traversal degree. This will
continue until the minimum degree for the mis-classification error has
been reached, otherwise all process will be iterated again (Dorigo et al.,
2006; Dorigo & Blum, 2005). The maximum number of iteration was set
to 100 and the desired number of features was set up to 7 features.
Evaporation Rate (ER) was also set to 0.05 (this value is kept constant
during performing ACO and generally is low value (0.01–0.05)) (Dorigo
& Blum, 2005). ER causes uniformly decrease in all the pheromone
values. From a practical point of view, pheromone evaporation is re-
quired to prevent a rapid convergence of the algorithm towards a sub-
optimal space. ACO algorithm was written and performed in MATLAB.

2.11. Random Forest (RF)

RF was used for the classification of EVOOs based on their cultivar.
RF was introduced by Breiman (2001) and applied for both regression

and classification problems. More information concerning RF can be
found in the Supplementary Material, Section S1.

Classification model based on ACO-RF was achieved using miss-
classification error in leave-one-out cross validation as fitness. The
predictive power of the proposed classification model was evaluated
independently using a set of 11 external samples that were not part of
the initial training set and confusion matrix was calculated to derive
error rate, class specificity and sensitivity (Ballabio & Consonni, 2013).
The division into training and test set was achieved by Kennard-Stone
algorithm (Kennard & Stone, 1969). Kennard-Stone algorithm starts by
selecting the pair of points (i samples and m/z features) that are the
furthest apart. The selected samples were assigned to the training sets
and removed from the list of samples. Then, the next pair of samples,
which are furthest apart, are assigned to the test set. In a third step, the
procedure assigns each remaining sample alternatively to the training
and test sets based on the distance to the previously selected sample.
The distance function used is Euclidean distance. Moreover, Receiver
Operating Characteristics (ROC) was calculated to control the accuracy
and error rate of proposed model. ROC curves were derived for each
class by plotting the sensitivity versus 1-specificity in six cultivars. A
reliable classification model would yield a point in the upper left corner
of the ROC area, representing maximum sensitivity and specificity,
while a random one causes points to be along the diagonal line from the
left bottom to the top right corner (Ballabio & Consonni, 2013).

2.12. Principal Component Analysis (PCA)

The usefulness of feature selection was addressed using un-
supervised classification method like Principal Component Analysis
(PCA). PCA was applied before and after performing feature selection to
investigate whether the covariance explained by PCs increases or not.
All the data processing, pretreatment and classification were performed
by a homemade program so called ChemoTrAMS, in MATLAB en-
vironment.

3. Results and discussion

3.1. Non-target screening identification

Using 40 EVOOs and 250 features in the training set along with
leave-one-out cross validation analysis as fitness function to identify
potential m/z features, ACO selected the four most relevant m/zs that
could explain the distribution of samples based on their varieties. These
selected m/z features could also create a final classification model with
miss-classification error of zero for each class. These features were m/z:
167.0345/tR= 2.43, m/z: 299.0561/tR= 8.11, m/z: 269.0456/
tR= 8.04 and m/z: 303.1237/tR= 6.50. In an attempt to identify these
masses, an inclusion list was created and QTOF system operated in Auto
MS/MS mode to obtain the MS/MS spectra of the unknown analytes.
Following the non-target screening workflow, EICs were generated in
Data Analysis and the most plausible molecular formulas were de-
termined showing high mass accuracy (less than 2.97 ppm) and ac-
ceptable isotopic fit values (less than 15.9 mSigma). The determined
molecular formulas were elucidated to certain chemical structures with
mass accuracy of± 0.001 ppm.

Specifically, for the mass detected at m/z: 167.0345, the molecular
formula C8H8O4 was assigned to it using “SmartFormula Manually”,
according to the criteria of mass accuracy (2.4 ppm) and isotopic fit (5.9
mSigma). In a further step, the prepared local database search, as in-
troduced in 2.8, was loaded in Metfrag (Wolf et al., 2010). The MS/MS
spectra were examined and verified resulting in 4 candidate com-
pounds. Only 1 tentative compound was scored with 1.0 in Metfrag
(Wolf et al., 2010) with all 7 fragments explained, vanillic acid. Pre-
dicted tR with QSRR (3.97 min) was close to the experimental. The
corresponding standard was purchased and the presence of vanillic acid
in the samples was verified. Vanillic acid is an antioxidant with
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antioxibacterial, antimicrobial and antifungal activity (Obied et al.,
2005). The EIC and MS/MS spectrum of vanillic acid (identification
level: 1) is presented in Fig. 1.

For the mass with m/z: 269.0456, the molecular formula C15H10O5

was assigned to it using “SmartFormula Manually”, with mass accuracy:
2.97 and isotopic fit: 15.9 mSigma). The local database search resulted
in three candidate compounds for that molecular formula. Performing
in silico fragmentation with Metfrag (Wolf et al., 2010) using the mo-
lecular formula and measured MS/MS revealed 1 tentative candidate
with high score (1.0) and all fragments explained, apigenin. The pre-
dicted tR for apigenin with QSRR (6.99 min) was close to the experi-
mental. Finally, the identity of apigenin in the samples was confirmed
with a standard. The EIC and MS/MS spectrum of apigenin (identifi-
cation level: 1) is shown in Fig. 2.

A peak corresponding to m/z: 299.0561 was detected. After ap-
plying mass accuracy and isotopic fit filters (mass accuracy: 1.08 and
isotopic fit: 9.3 Sigma), the molecular formula C15H12O6 was assigned
to it. The local database provides 4 possible compounds for this mole-
cular formula. These 4 substances were able to explain all the fragments
found in the MS/MS spectrum. In this case, QSRR provided the tenta-
tive candidate, luteolin 7-methyl ether, the predicted tR with QSRR
(7.01 min) was close to the experimental. Fig. 3 illustrates the EIC and
MS/MS spectrum of luteolin 7-methyl ether (identification level: 2b).

For the mass with m/z: 303.1237, the molecular formula C17H20O5

was assigned to it using “SmartFormula Manually”, with mass accuracy:
2.64 and isotopic fit: 6.8 mSigma). The local database search resulted in
only one candidate compound for that molecular formula, oleocanthal.
Performing in silico fragmentation with Metfrag (Wolf et al., 2010)
using the molecular formula and measured MS/MS all the fragments
were explained. The predicted tR for oleocanthal with QSRR (7.17min)
was close to the experimental. The peak at m/z: 165.0556 corre-
sponding to C9H9O3 has been reported by Dierkes et al. (2012). In
addition, the peak at m/z: 183.0663 corresponding to C9H11O4 has been
reported by Dierkes et al. (2012) and Bajoub et al. (2016). Oleocanthal
shares unique perceptual and anti-inflammatory characteristics with
Ibuprofen (Beauchamp et al., 2005). The EIC and MS/MS spectrum of

oleocanthal (identification level: 2a) is shown in Fig. 4.
All the compounds identified via non-target screening belong to the

applicability domain of the model and the predicted retention time
results are highly reliable. More information about the QSRR model and
ita applicability domain can be found in the Supplementary Material,
Section S2.

3.2. Quantification and semi-quantification results

Standard addition calibration curves were constructed for the
quantification and semi-quantification of the results. All standard ad-
dition calibration curves were constructed with the use of the peak area
of the spiked analyte subtracted by the peak area of a neat sample and
divided by the peak area of the internal standard (syringaldehyde
1.30mg kg−1). Vanillic acid and apigenin were quantified based on the
standard addition curves of their commercial standards. These two
standards were spiked in real EVOO samples at concentrations between
0.02 and 10mg kg−1 (10 calibration levels with 3 replicates at each
level) and the equations of the curves were:
y= [(−0.08 ± 0.07)+ (0.73 ± 0.02)×] and y= [(0.37 ± 1.21)+
(12.05 ± 0.26)×]. For the semi-quantification of luteolin 7-methyl
ether, luteolin was spiked in real EVOO samples at concentrations be-
tween 0.1 and 20mg kg−1 (10 calibration levels with 3 replicates at
each level). The standard addition curve of luteolin was:
y= [(0.69 ± 0.57)+ (4.28 ± 0.29)×]. Oleocanthal was found to
have structural similarity with tyrosol, as it has already been reported
by Kalogiouri et al. (2017). For the semi-quantification of oleocanthal,
standard addition calibration curve of tyrosol was constructed over the
range 1–100mg kg−1 and the equation was: [y= (−2.17 ± 0.03)+
(4.41 ± 0.07)×]. The analytical curves presented an adequate fit
when submitted to the lack-of-fit test (Fcalculated was less than Ftabulated
in all cases) and r2 above 0.99, proving that they can be used for the
quantification of the phenolic compounds. The quantification and semi-
quantification results of the identified markers are presented in mg
kg−1 (mean values ± SD (n=3)) in the Supplementary Material,
Table S3.

3.3. Principal Component Analysis (PCA)

All in all, two PCs explained 59% of variance and showed appro-
priate grouping of samples belonging to Manaki, Amfissis and
Chalkidikis EVOOs variety. These results are shown in Fig. 5(a). This
plot is generated by XCMS online and is based on the intensity of the MS
selected by “centWave” algorithm with the same parameters used in
peak picking step. It is clearly can be seen that PCA is not capable of
separating and grouping the samples based on their varieties using all
MS features. Surprisingly, a significant increase in variance (80.8%) is
observed after the selection of four features, followed by their identi-
fication and quantification. According to Fig. 5(b), EVOOs that be-
longed to the Amfissis variety were distributed as a separate class, and
the EVOOs of the varieties Manaki and Ladoelia were grouped as se-
parate classes, as well. However, the EVOOs belonging to the varieties
Chalkidikis, Koroneiki and Kolovi could not be differentiated and were
grouped together. This proves the requirement of feature selection tool
to avoid adding false positive MS features inside the loading variables.
Having identified all the selected m/z by ACO, their quantification re-
sults were used to build the decision tree using RF. ACO-RF as a vali-
dated classification approach generated a graph with a threshold for
each identified compound. The validation was done using ROC curve
showing the accuracy, specificity and selectivity for each variety along
with the error associated with leave-one-out and k-fold cross validation
results (Ballabio & Consonni, 2013). K-fold cross validation is a good
parameter to judge validity and over-fitting of a classification model as
instead of 1 sample per analysis, it excludes several samples out and
tries to calculate the error associated with classification model. The
number of k was set to 10 and cross validation was performed. The

Fig. 1. EIC and MS/MS spectra with 7 explained fragments of vanillic acid.

Fig. 2. EIC and MS/MS spectrum with 8 explained fragments of apigenin.
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errors after leave-one-out and k-fold cross validation were calculated
and found to be very low at 0.075 and 0.175, respectively. ROC curves
also described area under curve (AUC), accuracy, specificity and se-
lectivity at 1.00, which together with cross validation show that the
classification model is not over-fitted and can be applied to a suspect
external sample. The decision tree developed for the classification of
EVOOs according to their cultivar is presented in Fig. 6.

According to the decision tree established by ACO-RF, oleocanthal
and apigenin play dominant roles. Oleocanthal is important for the
discrimination of EVOOs labeled as Manaki or Chalkidikis and Ladoelia
or Koroneiki after justifying if they have high or low content of the
flavonoid apigenin. Therefore, if the concentration of apigenin is higher
than 2.16mg kg−1, it belongs to the cultivars of Ladoelia, Koroneiki or
Amfissis; and if its concentration of apigenin is less than 2.16mg kg−1,
then, it belongs to Manaki, Chalkidikis or Kolovi. Interestingly, vanillic

acid was found at lowest concentration (below 1.56mg kg−1) in EVOOs
of Kolovi. On the other hand, when the concentration of apigenin is
above 2.16mg kg−1 and the concentration of luteolin 7-methyl ether is
above 13.20mg kg−1, the EVOOs belong to the variety of Amfissis. This
is also observed from PCA (Fig. 5(b)) where the loading plot showed
high content of luteolin 7-methyl ether and apigenin, causing Amfissis
EVOOs to group together. None of the EVOOs belonging to the other
varieties showed similarly high content of luteolin 7-methyl ether. It is
also observed that EVOOs with higher content of oleocanthal and api-
genin, but lower content of luteolin 7-methyl ether belong to Ladoelia
variety, otherwise (if the concentration of oleocanthal is less than
86.20mg kg−1) they would be classified as Koroneiki. In addition. The
PCA loading plot (Fig. 5(b)) showed that Ladoelia EVOOs grouped to-
gether, presenting high concentration valued for oleocanthal. EVOOs
with higher concentrations of vanillic acid (more than 1.56mg kg−1),

Fig. 3. EIC and MS/MS spectrum with 3 explained fragments of luteolin 7-methyl ether.

Fig. 4. EIC and MS/MS spectrum with 3 explained fragments of oleocanthal.
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but lower concentration of apigenin (less than 2.16mg kg−1) belong to
either Manaki or Chalkidikis. To discriminate between Manaki and
Chalkidikis, the decision tree used again oleocanthal and indicated that
EVOOs of the Manaki cultivar have lower oleocanthal content con-
taining (less than 31.50mg kg−1).

Therefore, the decision tree could simply and easily apply dis-
crimination rule to understand how the EVOO varieties correspond to
the chemical profile, while PCA as a commonly used chemometrics tool

failed to distribute all the EVOOs based on their varieties.

4. Conclusions

This study contributes to the field of food authenticity and guar-
antees the classification of Greek PDO EVOOs with the application of a
non-target screening RP-UHPLC-ESI-QTOFMS method combined with
ACO-RF. The proposed method was successfully applied in 51 EVOOs of

Fig. 5. PCA with color shows the varietal (a) before (b) after MS features prioritization;
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the Greek cultivars: Amfissis, Chalkidikis, Kolovi, Koroneiki, Ladoelia
and Manaki that were produced during the harvesting year 2015–2016.

A peak list consisting of 280 features was generated using the XCMS
package, and was processed with chemometrics. PCA failed to dis-
tribute the samples based on their cultivars according to the initial non-
target list, showing that further m/z prioritization is needed to prevent
the incorporation of false positive features, which affect negatively the
distribution of the samples. After the implication of ACO and the se-
lection of the 4 most important features, PCA exhibited higher variance
and better sample distribution.

Non-target identification workflow was applied in order to identify
these 4 markers. In order to accelerate the identification task, a local
database consisting of 1608 compounds commonly occurring in olive
matrices was compiled, and 4 markers, apigenin, vanillic acid, luteolin
7-methyl ether and oleocanthal were identified.

Finally, RF established a robust classification that could successfully
classify Greek EVOOs, harvested in 2015–2016, into 6 Greek cultivars,
setting a concentration threshold for each selected marker. This tree
was based on the selection of the 4 markers that were identified as
apigenin, vanillic acid, luteolin 7-methyl ether and oleocanthal. Based
on ACO-RF, it was concluded that the concentration of oleocanthal
changes dramatically across Greek olive oil cultivars and has dis-
tinguished quantification threshold between Ladoelia (containing more
than 86.20mg kg−1) and Manaki (containing less than 31.50mg kg−1).
Interestingly, apigenin was found to play a crucial role in the prediction
of the cultivars. This method sets several concentration thresholds
(based on the quantification results) over the markers identified,
making the authentication task simple.

Appendix

Chemometric tools

XCMS: An R package to perform peak picking in data analyzed by
High Resolution Mass Spectrometry (HRMS).

centWave algorithm: Highly sensitive feature detection algorithm
for high resolution LC/MS that is based on detecting regions of interest
(ROI) in the m/z domain.

CAMERA: An R package for componentization and deconvolution of
mass spectrum.

Ant Colony Optimization (ACO): A nature inspired algorithm to

select important features among pool of variables (here, applied over
peaks-list to prioritize m/zs based on their contributions over each
variety).

MetFrag: An in silico fragmentation technique to assign fragments
to mass spectra and to subsequently rank the plausible candidates.

V-WSP algorithm: An unsupervised variable reduction method to
detect cofounded and redundant m/z in peaks-list and excludes them
prior performing the classification model.

Random Forest (RF): RF is a multi-class supervised classification
technique that is based on decision tree and here was used for classi-
fication of EVOOs based on their cultivar.

Kennard-Stone algorithm: This is a robust technique to create
representative subset (test set) which is needed for blind evaluation of
any classification models built.

Receiver Operating Characteristics (ROC) curve: This is a
method to control the accuracy and error rate of any newly proposed
classification model.

Principal Component Analysis (PCA): An unsupervised chemo-
metric technique for exploratory data analysis. It projects the data into
a reduced hyperspace, defined by orthogonal principal components.

Quantitative Structure-Retention relationship (QSRR): This is a
technique to explore relationship between chemical structures and their
liquid chromatographic retention time. Here, it was used during as-
signment of identification level for plausible candidates for a given m/z.

ChemoTrAMS: An in-house executable program to perform several
chemometric methods (peaks-list pretreatment, m/z prioritization, un-
supervised and supervised classification/regression methods and
quality control of the models) on HRMS results.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.foodchem.2018.02.101.
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